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Synthesis of a-MnO,@Mn,0; and a-MnO, nanoparticles using
tartaric/maleic acid and their enhanced performance in the
catalytic oxidation of pulp and paper mill wastewater
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ABSTRACT: The Two MnOx, namely a-MnO,@Mn,0; and a-MnO, catalyst,
were successfully synthesized using two different organic acids, tartaric and maleic
acid, as a reduction in the redox process of KMnO4. The obtained catalysts are used
in the AOP degradation reaction for paper mill effluent. The organic content in the
effluent is analogous to the COD number in the effluent. The degradation process
is depicted as a decrease in the COD number. The catalyst properties were charac-
terized using X-ray diffraction (XRD), field emission scanning electron microscopy
(FESEM), and N, adsorption-desorption. The obtained materials were then studied
for peroxymonosulfate (PMS) activation as a sulfate radical source for COD removal
reactions. The a-MnO,@Mn, O3, which contains Mn (IV) and Mn (I, III), demon-
strates an efficiency of nearly 75% COD removal when using a concentration of 0.3
gL, surpassing the performance of the a-MnO, catalyst. The activation energy of
the a-MnO,@Mn,0Oj; is measured to be 11.4 k] mol™.

Keywords: Advanced oxidation processes, catalyst, degradation, pulp and paper mill
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1. INTRODUCTION

With increased industrial production, contaminated effluent is released into na-
ture [1]. Pulp and papermaking industries has become one of the largest industries
and most water and energy consuming industries [2, 3]. The paper mill effluent,
generate variety of the pollutants, both organic and small quantity of inorganic
compound. The main compounds present in effluents are hemicelluloses, pectin,
non-polar long-chain organic compound such as resin acids, lignans, and organic
acids such as carboxylic acids in small quantities [4, 5]. Smaller molecular weight
organic compound relatively easy to be removed using biodegradations methods,
however high molecular weight organic compound such as lignin, cellulose, and
hemicellulose are usually has more low biodegradable properties. Therefore, new
treatment strategy must be emerged to tackle the problems [6]. One of the strongest
candidates in water treatment process is advanced oxidation process or AOP [7, 8].

AOP were first proposed in the 1980s, which are described as oxidation process
involving the generation of hydroxyl radicals (OH") in quantity to effect water pu-
rification. In the next advancement, sulfate radicals (SO,"") was widely used [4, 9].
SO," is strong oxidant with standard oxidation potential of E° = 2.6 eV. SO," could
be activated from peroxymonoslufate (PMS; HSO;") and peroxodisulfate (PDS;
S,04”") using certain catalyst in redox reaction [10, 11]. The catalyst itself usually
transitional metals. The activation of SO, from HSOs™ (PMS) and S,0,> (PDS)
reaction usually occurs [12]:

HSO4 + M > SO, + H* + M™*! (1)
$,05% + M™ > SO,” +SO,> + M™! )

The most frequently used metals include Ferric Fe(1I) and Fe(III) ions, and
manganese Mn(II), Mn(III), Mn(IV), and Mn(II, I1I), and Cobalt Co(II), Co(I1I),
and Co(IL, I1I) [13, 14]. Manganese based AOP catalysts have been studied exten-
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sively in recent decade due their physical and chemical properties.
For instances, manganese oxide, has better performance in wider
range of pH compared to Iron oxides to activate radicals [15-17].
Recent studies also stated physiochemical properties of man-
ganese oxides such as crystal structures, oxidation states, event
morphologies of the MnOx can significantly affect their effective-
ness and performance in AOP reaction [18-21]. The reactivity of
the manganese-based catalysts exhibited in an order of Mn;0, >
Mn,O; > MnO, which was correlated with oxygen mobility in the
catalyst [20]. To synthesized different physiochemical properties
of the MnOx, many factors were involved. Temperature, reducing
agent, reaction time, and solvent polarity were affected the oxida-
tion state and crystal structure of the MnOx [22].

In water treatment AOP reaction, MnOx was usually activated
PMS, PDS, even H, 0, to produce radicals required to oxidize the
organic pollutant contained in the waste-water [23, 24]. Saputra,
2013, using different phase of MnO,; a-, p-, and y-MnO, with
Oxone® to degrade phenol in aqueous solutions. The synthesized
a-MnO, has activation energy around 21.9 kjmol" for phenol
degradation [19]. PDS activation using MnOx was done by few
studies for removal different organic pollution such as phenol and
nitrobenzene. It’s believed that in PDS system beside SO,” , OH"
was also play strong role in degradation of organic pollutant [2S,
26].

In this study, different MnO, catalysts were synthesized using
maleic acid and tartaric acid which are a-MnO, and a-MnO,@
Mn,O;. The catalysts were synthesized using hydrothermal meth-
ods. The physiochemical properties of the catalysts were character-
ized using XRD, FESEM, and BET. The performance both of the
catalysts were tested to degrade paper mill effluent pollutant using
PMS as oxidant.

2. EXPERIMENTAL SECTIONS

2.1. Synthesis of a-MnO,. The a-MnO, was prepared by
reducing Potassium Permanganate (KMnQO,, Merck) with Maleic
Acid (C4H,0,, Sigma-Aldrich). KMnO, and C,H,O, were dis-
solved separately using deionized water with a molar ratio of 1:3
then mixed and stirred to produce precipitate in the form of black-
ish-brown particles. The precipitate is filtered accompanied by
rinsing with non-ionized water, followed by storage and condition-
ing for 24 hours at room temperature. After storage at room tem-
perature for 24 hours, it is then calcined at a temperature of 400°C
for 4 hours with a heating rate of 3°C min™ to form of a-MnO,.

2.2. Synthesis of a-MnO,@Mn,0;. The a-MnO,@Mn,0,
was prepared by reducing Potassium Permanganate (KMnO,,
Merck) with tartaric Acid (C,HsOg, Sigma-Aldrich). KMnO, and
C,H,O, were dissolved separately using deionized water with a
molar ratio of 1:3 then mixed and stirred to produce precipitate in
the form of blackish-brown particles. The precipitate is filtered ac-
companied by rinsing with non-ionized water, followed by storage
and conditioning for 24 hours at room temperature. After storage
at room temperature for 24 hours, it is then calcined at a tempera-
ture of 300°C for 4 hours with a heating rate of 3°C min™ to form a
precursor. The precursor was then calcined again at a temperature
0f 400°C for 4 hours and formed a catalyst a-MnO,@Mn,O3.
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2.3. Catalyst performance in paper mill effluent deg-
radation. a-MnO, and a-MnO,@Mn,0; was compared to de-
termine the best catalyst in AOP reaction. Pulp and paper mill ef-
fluent degradation was done in a 1 L glass reactor with a magnetic
stirrer, heater, and temperature controller. The reaction condition
for COD removal were: Effluent volume of 1 L, stirrer speed of
400 RPM, catalyst dosage of 0.4 gL', PMS concentration of 2 gL,
and temperature of 25°C, and reaction time of 180 min. for every
predetermined time, 5 mL sample was taken out for COD analysis
using COD reactor Hach DRB200, USA. To understand the effect
of the catalyst, PMS was used without the presence of the catalyst.
Adsorption test was done using the catalysts alone without the
oxidant. The most effective catalyst from the test was utilized for
further studies to examine the impact of catalyst dosage, PMS dos-
age, and temperature on the degradation of paper mill effluent. The
effect of catalyst dosage (0.1, 0.2 and 0.3 gL!); PMS dosage(0.4,
0.8, 1.6 gL); and temperature (30, 40, and 50°C).

2.4. Analysis and characterization of the catalyst. Paper
mill effluent’s COD was tested before and after degradation pro-
cess according to SNI 6986.73:2009 parameter. XRD characteri-
zation was performed using a Rigaku Miniex Goniometer at 30 kV
and 15 mA, using Cu Ka radiation at a step size of 0.01°. N, ad-
sorption-desorption was applied to measure the surface area and
pore size of the catalyst, according to the Brunauer-Emmet-Teller
(BET) and Barrett, Joyner, and Halenda (BJH) methods using
Quantachrome Nova 4200e, USA, Boynton Beach, Florida, USA.
Catalyst morphology was characterized using the field emission
scanning electron microscope JEOL Type JSM-6510LA, Japan.

3. RESULT AND DISCUSSION

3.1. The paper mills effluent analysis. Paper mill waste
is collected from the wastewater treatment process. The obtained
effluent was analyzed and found to have an initial COD content
of 1,119.6 mgL™". According to the Indonesian National Stand-
ard Regulation (SNI), the maximum allowable COD limit for
discharge into water bodies is 350 mgL"' [27]. Consequently, the
COD levels in the collected waste substantially exceed the permis-
sible standard.

3.2. Characterization of the catalysts. Two catalyst was
synthesized using two different small organic acids which are ma-
leic and tartaric acid demonstrated two different crystal structures.
The XRD patterns of the obtained catalysts exhibit two distinct
profiles, as shown in Figure 1. The manganese oxides catalyst
synthesized using maleic acid shows XRD peak patterns of 12.6°,
18.05°, 28.6° °, 41.9° 59.9°, 65.22° and 69.51°. The pattern is in
accordance to tetragonal a-MnO, (JCPDS No. 044-0141) [28].
Manganese oxide synthesized using tartaric acid has mixed of dual
phase of a-MnO, 12.6°, 28.6° 41.9°, and 59.9° with the additional
of a-Mn, O at the peaks 23.13° 32.95° and 35.68° of cubic phase
of a-Mn,0; (JCPDS No. 41-1442) [29].

The two phase of the catalyst a-MnO,@a-Mn,Oj; consists of
Mn (1L, I1I) as the Mn,O; and Mn(IV) of a-MnO, was the product
of reacting MnO,” ion with tartaric acid as an organic reductor.
The reaction mechanism for the formation of a-MnO,@Mn,0O;
is depicted in Scheme 1 [16]. Tartaric acid will proceed into an
ester complex with MnO," ion. Ester complex will undergo oxi-
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Scheme 1. Reaction mechanism of a-MnO,@Mn,O; formation.  Figure 1. XRD patterns of a-MnO,@a-Mn,O; and a-MnO,.
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Figure 2. SEM images of a-MnO,@a-Mn,0; (A) nd a-MnO, (B).

dative decomposition into the formation of Mn(V), CO, and an  cm’g™. both of them have with type IV BET isotherm with hys-
intermediate (step 3). The next step, Mn(V) reacts with the TA, teresis loop, meaning the catalysts have mesoporous pore system.
to produce Mn(IV) and Mn(III) and intermediate. Further redox  the smaller surface area of a-MnO,@a-Mn,0j is because of the
reaction transform Mn(III) onto Mn(II). In contrast, maleic acid ~ crystal multiphase structure. the nature of multiphase crystal tends
does not exhibit the same reduction strength as tartaric acid to  to have aggregation of the crystal bulk and make the bigger crystal
convert KMnO, into the Mn(III) and Mn(II) phases. size, compared to the monophase crystal structure of MnO, which
The morphology of the catalyst was studied using SEM. tends to be smaller in crystal size [31].

SEM images of the catalyst were recorded in (Figure 2 A and B).

a-MnO,@a-Mn,O; (Figure 2 A) existed in form of nanorods with Table 1. Surface area and pore volume of a-MnO,@a-Mn,O5 and
length around 100-150 nm [30]. Meanwhile, a-MnO, (Figure 2 a-MnO,.

B) has less defined regular phase morphology.

Catalyst BET surface area (m’g’) Pore volume (cm’g’

Figure 3 shows N, adsorption isotherms and pore size dis- 7 (m's") (em’g")
tributions of the two manganese oxides catalysts (a-MnO,@a- a-MnO, 4638 0.158
Mn,0; and a-MnO,). The surface area and pore volumes are giv- a-MnO,@a-Mn,0;  3.86 0.078

en in Table 1. As we can see, a-MnO, has larger surface area which
is 46.8 m*g" and pore volume 0f 0.158 cm’g". a-MnO,@a-Mn, O,
has smaller surface area 3.86 m’g" with the pore volume of 0.078

J.Appl.Mat and Tech. 2025, 6(1), 30-36
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Figure 3. N, adsorption-desorption isotherm a-MnO,@Mn,O; and a-MnO,.

3.3. Preliminary studies of COD removal. Figure 4 shows
the performance of the catalysts for COD removal, as expected,
COD degradation using only PMS showed no significant COD
removal. Sulfate radical needs to be activated using catalyst before
it could react with organic species. The adsorption process of the
organic effluent is also negligible by using a-MnO, and a-MnO,@
Mn,O;. As those catalysts have substantially low surface area. The
COD degradation kinetics are investigated using pseudo-first-or-
der models as illustrated in Equation 7 [32].

?)
where Ccop and Ccop, are the COD concentration at a different
time (t) and initial time (t, ), ko is the observed reaction rate con-
stant. The a-MnO, catalyst has around 44.1% of COD removal
efficiency with observed reaction rate constant of 0.042 min'. On
the other hand, a-MnO,@Mn, O exhibits better degradation effi-
ciency, achieving 71.9% COD removal with an observed reaction
rate of 0.067 min". This indicates that the reaction is not related to
surface area (Table 1). Previous study conducted by Saputra, vari-
ous oxidation states of MnOx has different efliciency in sulfat rad-
icals” activation from PMS. In this study, PMS activation rates as
it follows Mn,03>MnO>Mn;0,>MnO, [20]. a-MnO,@Mn,0,
has better activity compared to the a-MnO, alone is because
multi-valent Mn component Mn(IIT) and Mn(IV) are present in
a-MnO,@Mn,0;. The proposed mechanism of PMS activations
is [33]:

HSO™ + Mn,0; > 2MnO, + SO, + H*

HSOg4™ + 3Mn,0; » 2Mn;0,4 + SO+ OH-

HSO;4 +2MnO, > Mn,0; + SOs* + OH"

SO,” +H,0 > OH" + H* + SO

Organic Pollutant (cop) + Radicals (SO, + SO+ OH")
> Intermediate > CO, + H,O

Ccon, = Ccop, - €

(8)
©)
(10)
(11)

(12)

As from the mechanism above, a-MnO,@Mn,0; with the pres-
ence of Min,O; will produce directly both SO, and SO; ", instead
of a-MnO, that only have MnO, in the catalyst structure that only
produce SO;™ that has less activity compared to SO,” in COD
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Figure 4. Comparison of COD removal of paper mill effluent
profiles versus time on various prepared MnOx catalyst. Condi-
tion of Reaction: C "= 1,119 mgL"; [PMS] = 1.6 gL"'; catalyst
dosage: 0.3 gL!; Temp: 30°C.

removal process. As the best catalyst is a-MnO,@Mn, O3, the cat-
alyst then uses in the next process for further investigation.

3.4. Effect of reaction parameters on COD removal on
a-MnO,@Mn,0; catalyst. Investigation regarding various effect
on COD removal of paper mill effluent were carried out. Effect
on catalyst loading in COD removal were investigated in Figure
5. COD removal efficiency was increased as the catalyst dosage
increased. The best COD removal efficiency achieved by using
the 0.3 gL' catalyst dosage, COD removal could be achieved at
71.82% with observed reaction rate of 0.067 min™. Lesser catalyst
dosage at 0.2 gL and 0.1 gL' achieved COD removal efficiency
of 49.2% and 17.6% with observed reaction rate of 0.0036 min™
and 0.0014 min™ in respective order. The increased amount of the
catalyst will promote the radical production, since the more active
sites available in the catalytic process. As the more radical available,
the more increased the rate of COD removal [34, 35].
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Figure 5. Comparison of COD removal of paper mill effluent
profiles versus time on various catalyst loading. Condition of Reac-
tion: C oy, = 1,119 mgL; [PMS] = 1.6 gL'; Temp: 30°C.
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Figure 6. Comparison of COD removal of paper mill effluent
profiles versus time on various PMS concentrations. Condition of
3‘Rg(;a(c:tionz CCODO = 1,119 mgL"; catalyst dosage: 0.3 gL"'; Temp:

Figure 6 shows the COD removal process at different oxidant
concentrations. As it showed that increasing the concentration of
PMS in solution, the COD removal efficiency also increased. The
highest efficiency of COD removal was obtained at 1.6 gL of
PMS with 71.9% of COD removal (k= 0.067 min™) compared
t0 51.3% (kyp=0.052 min™') and 44.1% of COD removal efficiency
with observed reaction rate constant of (k) 0.042 min™ for 0.8
gL"and 0.4 gL' of PMS respectively. The more PMS available, di-
rectly involved in the radical production. Since, the available PMS
will be activated on the surface of the catalyst to produce sulfate
radicals. Therefore, in this study the more available PMS, the more
radical will be produce to reduce the COD value in the solution
[35].

The radical degradation of the organic materials is affected by
the temperature, many of them considered as endothermic reac-
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tions. Figure 7 shows that the increase of the COD removal effi-
ciency as the temperature increased. At the 50°C the COD removal
efficiency was obtained at 59.1% at 60 minutes. However, at 40°C
and 30°C the removal efficiency was reduced at 57.3% and 51.2%
as respected order. Therefore, the COD removal of paper mill ef-
fluent is endothermic reaction. The reaction kinetics for each reac-
tion were measured as illustrated in Equation 7 [36]. Where kg,
is the observed first order rate constant of COD removal. Data
fitting using exponential equation shows that the paper mills eftlu-
ent COD removal is apparent to be first order reactions. The rate
kinetic constants for each temperature, obtained from Equation 7,
are presented in Table 2.

Table 2. Catalyst activation energy and rate kinetic constant.

Catalyst Temperature (°C) ko, (min?) Ea (k] mol?)
30 0.067

a-MnO,@Mn,0; 40 0.07 11.4
S0 0.087

The activation energy of the catalyst was determined by utilizing
an Arrhenius plot of the kinetic constant, as depicted in the inset
of Figure 7. This process involved a linear correlation with the Ar-
rhenius equation, as illustrated in Equation 8 [37].

E
hk =lnA--2 (8)
RT

The activation energy (Ea) of the catalyst could be approached.
As it calculated, the activation energy of the a-MnO,@Mn, 05 is
11.4 kJ mol! (Table 2). a-MnO,@Mn,0; has lower activation
energy in COD removal reaction compared to MnO, only based
catalyst with 39.9 k] mol" [38], Co based with 20.6 kJ mol" [39],
and carbon composite such as MOFs-derived C@Cu-Ni catalyst
with the activation energy of 36.6 k] mol" [40] .

1.0
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0.9 1
y’ 0.8 g 2
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l(; 0.7 4 2704
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o |
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Figure 7. Temperature effect of COD removal of paper mill ef-
fluent profiles versus time. Condition of Reaction: C =1,119
mgL; catalyst dosage: 0.3 gL'; [PMS]: 1.6 gL

CODO
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4. CONCLUSION

Two catalyst a-MnO,@Mn,O; and a-MnO, were successfully
synthesized using two different acid reductor namely tartaric acid
and maleic acid. The materials showed different chemical prop-
erties as shown in XRD patterns and morphology from SEM im-
aging, which a-MnO,@Mn,0; has more well-ordered nano-rod
shapes compared to a-MnO, which has less defined morphologies.
As tartaric acid is stronger reductor than maleic acid, two different
oxidation states of manganese (Mn(IV) and Mn(IL, I1I)) could be
synthesized. As this study shows two different oxidation states of
Mn improved the catalytic efficiency for paper mill effluent COD
removal using AOP reactions. The factors affecting COD removal,
including PMS concentration, catalyst loading, and reaction tem-
perature, were also examined. The effect of catalyst dosage (0.1,
0.2and 0.3 gL!); PMS dosage(0.4, 0.8, 1.6 gL); and temperature
(30,40, and 50°C). The a-MnO,@Mn, O3, which is compromised
by Mn(IV) and Mn(1I, I1I), by using 0.3 gL ! a-MnO,@Mn,0;,
1.6 gL' PMS dosage, at S0°C has the best efliciency with almost
75% COD removal, higher than the a-MnO, catalyst. Kinetic stud-
ies showed that COD removal is apparent as first order reaction
and the activation energy of the a-MnO,@Mn,O; was obtained
to be 11.4 kJ/mol.
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